
© 2018 JETIR June 2018, Volume 5, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1908754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 23 
 

 

                A Technique for Fractional Programs with Restriction on 

Variables  

 

Anuradha Sharma 
Department of Mathematics, University of Delhi, India. 

Abstract : This research study deals with very special class of single ratio fractional programs.The objective function considered in 

tjhis study  is ratio of  non linear functions each  separable in nature..Numerator as well as denominator both are transformed to 

linear function by incorporating/using.the piecewise linear approximation method via grid point and thereby a linear fractional 

progam is determined which is converted/formulated into a linear program by making use of Charne's and Cooper transformation 

method. In the course of action, the variables associated being assumed to be bounded i.e. are finite valued. The procedure is 

explained stepwise by an algorithm and is explained with help of an illustrative example..  

Index Terms: Piecewise linear approximation,;Optimization.Grid points search method.;Separability.;Affine Functios,;Linear 

programming. 

                                                                        I.  INTRODUCTION  

Consider the separable fractional programming problem 

(SFPP) . 

  

where  and  are separable non-linear functions of x with the condition that either pj and rj are both zero or non-zero;  

are linear functions of ,  is positive on the constraints set 

 

Fractional Programminghas been dealt by many authors [1.2.4.5.6.7] Charne's et al. reformulated linear fractional programming 

problem into a linear programming problem by applying. the transformation. Fractional programs arise in various 

circumstances/cases: in management science as well as other areas. Maximization of productivity, maximization of return on 

investment, maximization of cost/time give rise a fractional program.  

                                    Nonlinear programming problems have gained great importance since they arie in many fields like financial 

analysis of firms,selection problem;cutting stock problem; stochastic processing.Single ratio fractional programs generally appeared 

in the literature in 1960s. Much work has been carried out on theory,classification and applications in this regard. Single ratio 

fractional programs have been stated in the monographs by Craven[6].A model has been presented by Chang[4] in which auxilliary 

constraints have been used to linearize the mixed 0−1 fractional programming problem. Here we use approximation technique for 

finding the solution so as to overcome the complexities/infeasibility of the problem. For solving large scale problems, approximation 

techniques are employed.The problem presented in this paper is non-concave fractional program.A number of methods of concave 

programming are available for finding solution by transforming a non-concave fractional program into concave program. Portfolio 

selection problems and stochastic decision making problems [3.8,9,10] are non-concave fractional programs. 

 

                                                             2. METHODOLOGY AND THEORETICAL FRAMEWORK 

 

The following definitions are employed: 

Definition 1: “Non-linear programs where the objective functions and the constraint functions can be expressed as the sum of 

functions, each involving only one variable, are called Separable Programs.”  

Definition 2:” Let f be a real valued function defined on a convex set S in . The function f is said to be strictly convex on S if 

 ” 
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While carrying the solution process, the property of linear functions that it is both concave and convex in nature is used. 

 

 

                                            3.Reformulation into Linear Program: 

 

Consider the problem 

(SFPP) = min .  (1) 

 subject to  ; 

xj  0 and bounded for 1jn where either both “pj” and “rj “are zero or non-zero. 

  

For , let “uj” and “vj”: be strictly convex and gij linear for i = 1, 2, ...,m. 

Assuming for each , uj, vj .gij. For i = 1, ..,m are replaced by their piecewise linear approximation via grid points  

   for v = 1, ..., pj, obtain the fractional program 

(L/FP)  

 

 subject to ,  for i = 1,2, ..., −m 

   

   

with atmost two adjacent 's are positive for . 

The above problem is a linear fractional program with the exception that almost two adjacent 's are positive for  

By Charne'sCooper transformation[5], 

  

 , 

this fractional program reduces to the linear programming problem 

(L/PP)  

 subject to  

  

  

  

  

  

Let the solution to (LPP) be   for V = 1, ,.., pj, .  

We shall now prove the following: 
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Theorem 1: Let atmost two  be positive for .Then they must be adjacent. 

Proof: If  and  are positive for each , it only remains to show that  and  must be adjacent. 

 Let  and  be not adjacent for  > 0. 

 Therefore, there exists a grid point  which is expressible as 

  

where   

Consider the optimal solution of (LPP). 

Let for each  be the optimum Lagrangian multiplier associated with the constraint  be  

the optimum, Lagrangian multipliers associated with the first on constraints and nj be the optimum Lagrangian multiplier associated 

with the constraint 

    (4) 

Hence,a subset of the Kuhn-Tucker necessary conditions are satisfied 

i.e.    (a) 

    (b) 

    (c) 

Since  and  are strictly convex in nature, it is observed that condition (c) is not satisfied for  = . 

 Conditions “(a) and (b)” imply that 

     

     

     (5) 

which is a contradiction to condition (c) for . So, our assumption that  are not adjacent stands wrong. 

 Hence,  are adjacent and the theorem stands proved. 

                                    

                                                 4. ALGORITHMIC DEVELOPMENT 

 

Step 0 : Consider (SFPP) defined above 

Step 1 : Consider the set T. 

Step 2 : Reduce the given (SFPP) to (LFP) by replacing  and  with their piecewise linear approximations for i = 1, ...,m 

and . 

Step 3 : By using Charne's and cooper transformation, solve (LFP) by finding optimal solution of the corresponding (LPP) problem.  

 The solution so obtained is optimal to (SFPP). 

                                                             

                                                                      5. ILLUSTRATION 

 

Consider the following (FP) 
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  2.2 .2; 

  3 .5; 

  6.1 .1; 

  4.1 .1; 

  .6; 

  .4; 

  .5; 

  .6; 

Here “pj and rj” are both non-zero; gij are linear functions of x .. 

Since non-linear terms appear involving x3, So T = {3} and no grid points need to considered for x3.; 

Also,  and  lie in interval [0, 4]. 

Take the grid points 0, 2 and 4.0 for the variables x1, x2 and x4 

 . .0; 

 . .0; 

 . .0; 

Hence.,  ; 

  ; 

  ; 

  .0; 

  .0; 

  .0; 

   

So. piecewise linear approximation of  

  .0; (7) 

and the piecewise linear approximation of  

  .0; (8) 

Therefore, (FP) gets reduced to the following Linear Fractional Program 

  . 

               subject to  

  .0; 

  .0; 

  .0; 

  .0; 

  .0; 

  ; 

  ; 

  ; 

  ; 

 Atmost two  are positive : . The condition two 's are positive for  is relaxed, above problem get 

reduced to linear fractional program.. 

 By using Charne's Coopper transformation  

 ,  

(LPP)  

 subject to  
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 ; 

 ;  (10) 

 ; 

 ; 

 ; 

 ; 

 ; 

 ; 

` ; 

 ; 

 ; 

The optimal solution to the problem stated above is: 
  

 

 

INFERENCES: While developingmethodology for solving  problem, a fractional programming problem is considered in which 

the numerator & denominator are separable functions which in turn are replaced by their corresponding piecewise linear 

approximations by making use of grid punts. The parent problem is finally reduced to linear fractional program excluding the 

constraint at most, two 's are positive for . The Linear Fractional Program is then reduced to a linear program by using the 

Charne's Cooper transformation. 
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